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Abstract
In this paper, a class of differential–difference equations (DDEs) are
considered for Lie group analysis. With the help of symbolic computation
MATHEMATICA, the continuous Lie point symmetry technique is extended
to obtain corresponding infinitesimals. Similarity reductions are derived
by solving the characteristic equations. Then some exact solutions are
presented by using inverse transformations. In addition, starting from concrete
realization of the generalized Virasoro type symmetry algebra [σ(f1), σ (f2)] =
σ(f ′

1f2 − f1f
′
2), many high-dimensional DDEs can be derived. For example,

we give out the (2+1)-dimensional Toda lattice, modified Toda lattice and
special Toda lattice in a uniform way.

PACS numbers: 02.60.Lj, 02.10.Ud, 05.50.+q

1. Introduction

In the recent development of the nonlinear science of differential–difference equations (DDEs),
the research of symmetry property and the construction of exact solutions become more
and more urgent and important. The Lie symmetry group analysis method for continuous
differential equations was originally developed by Sophus Lie and is a highly algorithmic
method. There have been considerable important developments in this method which
include Lie–Bäcklund symmetry, potential symmetry and so on [1, 2]. Usually, with
a continuous differential equation, we can study its invariance, symmetry properties and
similarity reductions by means of the Lie symmetry method. In [3–5], Levi and Winternitz
have extended the continuous Lie symmetry method to solve some DDEs which include
(1+1)-dimensional Toda lattice and (2+1)-dimensional Toda lattice. Despite many software
packages such as MathLie [6] and DESOLV [7] having been presented to deal with continuous
differential equations, special packages for DDEs have not been invented. The main reason
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is that we must treat every function at different grid points to a new variable. But to some
concrete DDEs, we can solve them by the form of human–computer interaction.

In section 2, we consider the following family of (1+1)-dimensional DDEs [8]:

� = utt (n) − (
a1u

2
t (n) + a2ut (n) + a3

)
(g[u(n + 1) − u(n)] − g[u(n) − u(n − 1)]) = 0,

(1.1)

where g[u] satisfies g′ = a1g
2 + a4g + a5. Clearly this family generalizes some well-studied

DDEs. For example, the Toda lattice

utt (n) − eu(n+1)−u(n) + eu(n)−u(n−1) = 0 (1.2)

corresponds to a1 = a2 = a5 = 0, a3 = a4 = 1, g[u] = eu. The modified Toda lattice

utt (n) − ut (n)(eu(n+1)−u(n) − eu(n)−u(n−1)) = 0 (1.3)

corresponds to a1 = a3 = a5 = 0, a2 = a4 = 1, g[u] = eu, the coth-form DDE

utt (n) + u2
t (n)(coth[u(n + 1) − u(n)] − coth[u(n) − u(n − 1)]) = 0 (1.4)

corresponds to a2 = a3 = a54 = 0, a1 = −a5 = −1, g[u] = coth[u]. The Volterra lattice

utt (n) + u2
t (n)

(
1

u(n + 1) − u(n)
− 1

u(n) − u(n − 1)

)
= 0 (1.5)

corresponds to a2 = a3 = a4 = a5 = 0, a1 = −1, g[u] = 1
u

.
In [9], the authors have shown that there is an infinite number of equations which have

the same Virasoro algebra as the KP equation. Among them only the KP and the cKP are
integrable. In section 3, the following (2+1)-dimensional modified Toda lattice [10]

uxt (n) − ux(n)(eu(n+1)−u(n) − eu(n)−u(n−1)) = 0. (1.6)

and special Toda lattice [11]

uxt (n) − [ux(n + 1) + ux(n)] eu(n+1)−u(n) + [ux(n) + ux(n − 1)] eu(n)−u(n−1) = 0 (1.7)

are considered by Lie symmetry reduction method and we present that these high-dimensional
DDEs can be constructed in a uniform way, starting from concrete realization of the generalized
Virasoro type symmetry algebra [σ(f1), σ (f2)] = σ(f ′

1f2 − f1f
′
2) in section 4. Section 5 is

a short summary.

2. Symmetries and exact solutions of equation (1.1)

Knowing the intrinsic Lie symmetry vector field [3–5, 12]

V = T (t)
∂

∂t
+

∑
m∈Z

U(m, t, u(m))
∂

∂u(m)
(2.1)

which corresponds to point transformations of the form t̃ = �g(t), ũ(n) = �g(n, t, u(n)), we
can obtain the k-order prolongation vector field as follows:

pr(k)V = V +
∑
m∈Z

∑
1�j�k

U tj (m)
∂

∂utj (m)
, (2.2)

where Utj (m) ≡ Utj (m, t, u(m), ut (m), . . . , utj (m)) for simplification and

Utj (m) = DtU
tj−1

(m) − (DtT )utj (m). (2.3)

Thus the invariance of equation (1.1) needs to calculate

Ut(m) = DtU(m) − (DtT )ut (m), Utt (m) = DtU
t(m) − (DtT )utt (m), (2.4)
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pr(2)V [�]|�=0 = 0. (2.5)

Namely, with the help of symbolic computation MATHEMATICA, we have

Utt (n) + 2Uu(n)t (n)ut (n) + Uu(n)u(n)(n)u2
t (n) + (Uu(n)(n) − 2Tt )

(
a1u

2
t (n) + a2ut (n) + a3

)
× (g[u(n + 1) − u(n)] − g[u(n) − u(n − 1)]) − Tttut (n) − (2a1ut (n) + a2)

× (g[u(n + 1) − u(n)] − g[u(n) − u(n − 1)])(Ut (n) + Uu(n)(n)ut (n) − Ttut (n))

− (
a1u

2
t (n) + a2ut (n) + a3

)
(a1g

2[u(n + 1) − u(n)] + a4g[u(n + 1) − u(n)] + a5)

× (U(n + 1) − U(n)) +
(
a1u

2
t (n) + a2ut (n) + a3

)
(a1g

2[u(n) − u(n − 1)]

+ a4g[u(n) − u(n − 1)] + a5)(U(n) − U(n − 1)) = 0. (2.6)

Thus, comparing the coefficients of
{
ui

t (n), (i = 2, 1, 0)
}

from the above equation, the
following equations

u2
t (n) : Uu(n)u(n)(n) − a1Uu(n)(n)(g[u(n + 1) − u(n)] − g[u(n) − u(n − 1)])

− a1(a1g
2[u(n + 1) − u(n)] + a4g[u(n + 1) − u(n)] + a5)(U(n + 1) − U(n))

+ a1(a1g
2[u(n) − u(n − 1)] + a4g[u(n) − u(n − 1)] + a5)(U(n) − U(n − 1)) = 0,

(2.7)

u1
t (n) : 2Uu(n)t (n) − Ttt − (Tta2 + 2a1Ut(n))(g[u(n + 1) − u(n)] − g[u(n) − u(n − 1)])

− a2(a1g
2[u(n + 1) − u(n)] + a4g[u(n + 1) − u(n)] + a5)(U(n + 1) − U(n))

+ a2(a1g
2[u(n) − u(n − 1)] + a4g[u(n) − u(n − 1)] + a5)(U(n) − U(n − 1)) = 0,

(2.8)

u0
t (n) : Utt (n) + (Uu(n)(n)a3 − 2Tta3 − a2Ut(n))(g[u(n + 1) − u(n)] − g[u(n) − u(n − 1)])

− a3(a1g
2[u(n + 1) − u(n)] + a4g[u(n + 1) − u(n)] + a5)(U(n + 1) − U(n))

+ a3(a1g
2[u(n) − u(n − 1)] + a4g[u(n) − u(n − 1)] + a5)(U(n) − U(n − 1)) = 0

(2.9)

can be derived. Furthermore, comparing the coefficients of {g[u(m + 1) − u(m)], (m =
n, n − 1)}, we can obtain

a1(U(m + 1) − u(m)) = 0, (2.10)

Uu(n)(n) + a1a4(U(m + 1) − U(m)) = 0, (2.11)

Uu(n)u(n)(n) − a1a5(U(n + 1) − U(n)) + a1a5(U(n) − U(n − 1)) = 0, (2.12)

a1a2(U(m + 1) − u(m)) = 0, (2.13)

2a2Uu(n)(n) − 3Tta2 − 2a1Ut(n) − a2a4(U(m + 1) − U(m)) = 0, (2.14)

2Uu(n)t (n) − Ttt − a2a5(U(n + 1) − U(n)) + a2a5(U(n) − U(n − 1)) = 0, (2.15)

a1a3(U(m + 1) − u(m)) = 0, (2.16)

a3Uu(n)(n) − 2Tta3 − a2Ut(n) − a3a4(U(m + 1) − U(m)) = 0, (2.17)

Utt (n) − a3a5(U(n + 1) − U(n)) + a3a5(U(n) − U(n − 1)) = 0, (2.18)

with {m = n, n − 1}.
Solving equations (2.10)–(2.18), we can obtain

Case 1. When a1 = 0 ⇒ g′ = a4g + a5 ⇒ g[u] = c1 ea4u − a5
a4

, equation (1.1) degenerate as

utt (n) − (a2ut (n) + a3)(c1 ea4u(n+1)−a4u(n) − c1 ea4u(n)−a4u(n−1)) = 0 (2.19)
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and without loss of generality, we only consider

utt (n) − (a2ut (n) + a3)(e
u(n+1)−u(n) − eu(n)−u(n−1)) = 0. (2.20)

Furthermore, when a2 = 0, a3 = 1, equation (2.20) just is the (1+1)-dimensional Toda lattice
(1.2) and its intrinsic Lie symmetries have been obtained in [3]. Thereby, when a2 �= 0, the
DDE (2.20) has Lie symmetries (infinitesimals)

T = c2t + c3, U = −c2n − c2a3

a2
t + c4 (2.21)

and associated with these Lie symmetries, a three-dimensional Lie algebra can be represented
by the generators

V1 = t
∂

∂t
−

(
n +

a3

a2
t

)
∂

∂u(n)
, V2 = ∂

∂t
, V3 = ∂

∂u(n)
. (2.22)

Similarity reductions can be derived by solving the corresponding characteristic equation
dt
T

= du(n)

U(n)
. Namely, when c2 �= 0, Similarity variable is

w(n) = u(t, n) +
a3

a2
t +

(
n − c4

c2
− a3c3

a2c2

)
ln[c2t + c3] (2.23)

and reduced equation is
−c2

a2
= ew(n+1)−w(n) − ew(n)−w(n−1). (2.24)

Thus from an exact solution w(n) = c5 +
∑n

j=1 ln
[
c6 − c2

a2
j
]
, we can obtain an exact solution

of equation (2.20)

u(t, n) = −a3

a2
t +

(
−n +

c4

c2
+

a3c3

a2c2

)
ln[c2t + c3] + c5 +

n∑
j=1

ln

[
c6 − c2

a2
j

]
. (2.25)

However, when c2 = 0, Similarity variable is

w(n) = u(t, n) − c4

c2
t (2.26)

and reduced equation is

0 = ew(n+1)−w(n) − ew(n)−w(n−1). (2.27)

Thus from an exact solution w(n) = c7n + c8, we can obtain another exact solution of
equation (2.20)

u(t, n) = c4

c3
t + c7n + c8. (2.28)

Case 2. When a1 �= 0, a3 = a2
2

4a1
, equation (1.1) degenerate as

utt (n) −
(

a1u
2
t (n) + a2ut (n) +

a2
2

4a1

)
(g[u(n + 1) − a4u(n)] − g[u(n) − a4u(n − 1)]) = 0.

(2.29)

This DDE has Lie symmetries (infinitesimals)

T = c1t + c2, U = −a2c1

2a1
t + c3. (2.30)

When c1 �= 0, Similarity variable is

w(n) = u(t, n) +
a2

2a1
t −

(
a2c2

2a1c1
+

c3

c1

)
ln[c1t + c2] (2.31)
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and reduced equation is
−c1

a2c2
2 + a1c3

= g[w(n + 1) − w(n)] − g[w(n) − w(n − 1)]. (2.32)

Thus from an exact solution w(n) = c4 +
∑n

j=1 g−1
[
c5 − c1

a2c2
2 +a1c3

j
]
, we can obtain an exact

solution of equation (2.29)

u(t, n) = −a2

2a1
t +

(
a2c2

2a1c1
+

c3

c1

)
ln[c1t + c2] + c4 +

n∑
j=1

g−1

[
c5 − c1

a2c2
2 + a1c3

j

]
, (2.33)

where g−1 is defined an inverse operator. To some concrete examples such as equation (1.4)
and equation (1.5), we can obtain exact solutions

u(t, n) = c3

c1
ln[c1t + c2] + c4 +

n∑
j=1

Arccoth

[
c5 +

c1

c3
j

]
, (2.34)

u(t, n) = c3

c1
ln[c1t + c2] + c4 +

n∑
j=1

1

c5 + c1
c3

j
. (2.35)

In addition, obviously, equation (1.1) has a Lie symmetry T = c2, U = c3, namely,
equation (1.1) which include equation (2.29) consequently has an exact solution (2.28).

3. Symmetries and exact solutions of equations (1.6) and (1.7)

To the (2+1)-dimensional modified Toda lattice(1.6) and special Toda lattice (1.7), we have no
knowledge of their Lie symmetries. So in the following, we apply the Lie symmetry reduction
method [3–5, 12]

prkV = V +
∑
m∈Z

∑
1�i+j�k

Uxi tj (m)∂u
xi tj

(m), (3.1)

Uxi tj (m) = DxU
xi−1t j (m) − (DxX)uxi tj (m) − (DxT )uxi−1t j+1(m), (3.2)

= DtU
xi tj−1

(m) − (DtX)uxi+1t j−1(m) − (DtT )uxi tj (m) (3.3)

directly to them, where we restrict the vector field V as the simplest ‘intrinsic’ form
V = T (x, t)∂t + X(x, t)∂x +

∑
m∈Z U(x,m, t, u(m))∂u(m). Thus, the equable infinite

dimensional Lie algebra with basis,

K1(f ) = −f (t)∂t + f ′(t)n∂u(n), K2(g) = −g(x)∂x, K3(h) = −h(t)∂u(n),

(3.4)

can be derived. For simplification, we omit the process. We can reduce the equation by
solving characteristic equations,

dt

−f (t)
= dx

−g(x)
= du(n)

f ′(t)n − h(t)
. (3.5)

Case 1. When f (t) is a constant, we can set f (t) = 1 without loss of generality. Then the
similarity variables are

y = t −
∫ x dx̃

g(x̃)
, F (y, n) = u(x, t, n) −

∫ t

h(t̃) dt̃ . (3.6)
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Case 2. When f (t) is not a constant, we can obtain

y =
∫ t dt̃

f (t̃)
−

∫ x dx̃

g(x̃)
, F (y, n) = u(x, t, n) + n ln[f (t)] −

∫ t h(t̃)

f (t̃)
dt̃ . (3.7)

From case 1 or case 2, we can obtain the following reduced equations,

Fyy(n) − Fy(n)(eF(n+1)−F(n) − eF(n)−F(n−1)) = 0, (3.8)

Fyy(n) − eF(n+1)−F(n)[F(n + 1) + F(n)]y + eF(n)−F(n−1)[F(n) + F(n − 1)]y = 0. (3.9)

To the above (1+1)-dimensional modified Toda lattice (3.8) and special Toda lattice (3.9),
we can also obtain the following equable Lie algebra with basis,

K4 = y∂y − n∂F(n), K5 = ∂y, K6 = ∂F(n). (3.10)

So the corresponding similarity variables can be obtained from the following characteristic
equation,

dy

c3y + c4
= dF(n)

−c3n + c5
. (3.11)

Case I. When c3 = 0, we can obtain similarity variable G(n) = F(y, n) − c5
c4

y and reduce
equation (3.8) or equation (3.9) to

eG(n+1)−G(n) − eG(n)−G(n−1) = 0. (3.12)

Thus, from an exact solution G(n) = c6n+c7 of the above equation, equations (3.6) and (3.7),
we can construct two new exact solutions of the modified Toda lattice (1.6) and special Toda
lattice (1.7),

u(x, t, n) =
∫ t

h(t̃) dt̃ +
c5

c4

(
t −

∫ x dx̃

g(x̃)

)
+ c6n + c7, (3.13)

u(x, t, n) = −nln[f (t)] +
∫ t h(t̃)

f (t̃)
dt̃ +

c5

c4

(∫ t dt̃

f (t̃)
−

∫ x dx̃

g(x̃)

)
+ c6n + c7. (3.14)

Case II. When c3 �= 0, we can obtain similarity variable G(n) = F(y, n)− −c3n+c5
c3

ln[c3y + c4]
and reduce equation (3.9) to

eG(n+1)−G(n) − eG(n)−G(n−1) = −c3. (3.15)

Thus, from an exact solution G(n) = c8 +
∑n

j=1 ln [−c3j + c9] of the above equation,
equations (3.6) and (3.7), we can construct two new exact solutions of the (2+1)-dimensional
modified Toda lattice (1.7),

u(x, t, n) =
∫ t

h(t̃) dt̃ +
−c3n + c5

c3
ln

[
c3

(
t −

∫ x dx̃

g(x̃)

)
+ c4

]
+ c8 +

n∑
j=1

ln [−c3j + c9] ,

(3.16)

u(x, t, n) = −n ln[f (t)] +
∫ t h(t̃)

f (t̃)
dt̃ +

−c3n + c5

c3
ln

[
c3

(∫ t dt̃

f (t̃)
−

∫ x dx̃

g(x̃)

)
+ c4

]

+ c8 +
n∑

j=1

ln [−c3j + c9] . (3.17)
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In this case, equation (3.9) also can be reduced to

eG(n+1)−G(n)(−2c3n + 2c5 − c3) − eG(n)−G(n−1)(2c3n + 2c5 + c3) = (c3n − c5)c3. (3.18)

Thus, from an exact solution G(n) = c10 +
∑n

j=1 ln
[

c3+2c5
8 − c3

4 j
]

of the above equation,
equations (3.6) and (3.7), we can construct two exact solutions of equation (1.7),

u(x, t, n) =
∫ t

h(t̃) dt̃ +
−c3n + c5

c3
ln

[
c3

(
t −

∫ x dx̃

g(x̃)

)
+ c4

]

+ c10 +
n∑

j=1

ln

[
c3 + 2c5

8
− c3

4
j

]
, (3.19)

u(x, t, n) = −n ln[f (t)] +
∫ t h(t̃)

f (t̃)
dt̃ +

−c3n + c5

c3
ln

[
c3

(∫ t dt̃

f (t̃)
−

∫ x dx̃

g(x̃)

)
+ c4

]

+ c10 +
n∑

j=1

ln

[
c3 + 2c5

8
− c3

4
j

]
. (3.20)

4. Generalized Virasoro symmetry subalgebra of some DDEs

In [9], a general class of fourth order scalar partial differential equations(PDEs), invariant
under the same group of local point transformations as the KP equation, is obtained. This
is a very important reverse direction technology to seek for some significative PDEs. In the
following, we extend this method to deal with DDEs. Firstly, we need to realize the Virasoro
subalgebra [σ(f1), σ (f2)] = σ(f ′

1f2 − f1f
′
2) in terms of vector fields on the space S1 ⊗ S2 of

independent and dependent variables, here S1 is the three-dimensional coordinates (x,m, t)

and S2 is the function u(x,m, t). In order to obtain some concrete significant results, we
restrict the vector field V as

V = −f (t)∂t + 0 · ∂x +
∑
m∈Z

f ′(t)m∂u(m), (4.1)

where u(m) = u(x,m, t) for convenience. In order to construct invariant kth-order
differential–difference equations, we need the kth prolongation of the corresponding vector
field (3.1)–(3.3). Thus, we have

Uxi

(m) = 0, (i = 1, 2, 3, . . .), (4.2)

Utj (m) = f (j+1)m +
j−1∑
h=0

(
j

h

)
f (j−h)uth+1(m), (j = 1, 2, 3, . . .), (4.3)

Uxi tj (m) =
j−1∑
h=0

(
j

h

)
f (j−h)uxi th+1(m), (i, j = 1, 2, 3, . . .), (4.4)

where let f = f (t) for simplification.
To get the explicit elementary invariants of V , we have to solve the corresponding

characteristic equations

dt

−f
= dx

0
= du(m)

f ′m
= dut (m)

f ′′m + f ′ut (m)
= · · · . (4.5)

After finishing detailed calculations, we can obtain various group invariants, for example,
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I0,0(m) = eu(m)f m, (4.6)

Ii,0(m) = uxi (m), (4.7)

I0,1(m) = ut (m)f + f ′m, (4.8)

Ii,1(m) = uxi t (m)f, (4.9)

I0,2(m) = utt (m)f 2 + mff ′′ − f ′2m, · · · (4.10)

where integer m ∈ (n − a, n + b) and i = 1, 2, 3, . . .. The general V invariant equation then
can be written as follows,

Eq(I0,0(m), Ii,0(m), I0,j (m), . . .) = 0. (4.11)

Usually, the invariants Iij (m) are f -dependent. However, to find the general Virasoro type
subalgebra integrable equations, we should select out the f -independent equations from
equation (4.11). Here we only list the (2+1)-dimensional Toda lattice, modified Toda lattice
and special Toda lattice.

Toda lattice
From the following V invariant equation

I1,1(n) − I0,0(n)

I0,0(n − 1)
+

I0,0(n + 1)

I0,0(n)
= 0, (4.12)

we can obtain the (2+1)-dimensional Toda lattice [3–5]

uxt (n) − eu(n)−u(n−1) + eu(n+1)−u(n) = 0. (4.13)

Modified Toda lattice
From the following V invariant equation

I1,1(n) − I1,0(n)

(
I0,0(n + 1)

I0,0(n)
+

I0,0(n)

I0,0(n − 1)

)
= 0, (4.14)

we can obtain the (2+1)-dimensional modified Toda lattice (1.6).

Special Toda lattice
From the following V invariant equation

I1,1(n) − I0,0(n + 1)

I0,0(n)
[I1,0(n + 1) + I1,0(n)] +

I0,0(n)

I0,0(n − 1)
[I1,0(n) + I1,0(n − 1)] = 0, (4.15)

the (2+1)-dimensional special Toda lattice (1.7) can be derived. Here, we give out the (2+1)-
dimensional Toda lattice, modified Toda lattice and special Toda lattice in a uniform way. In
fact, many higher order DDEs can be obtained by using this method.

5. Summary

In this work, we have studied systematically the intrinsic Lie point symmetries [3–5], similarity
reductions and exact solutions of some DDEs. We believe that applying this method to solve
other DDEs is worth studying. In addition, non-intrinsic Lie symmetries

V = T (t, ui : i ∈ Z)
∂

∂t
+

∑
n∈Z

Un(t, ui : i ∈ Z)
∂

∂u(n)
(5.1)

and conditional symmetries [3–5] are our next challenge for studying these DDEs. How does
one seek for new integrable DDEs from a concrete realization of the generalized Virasoro type
symmetry algebra [σ(f1), σ (f2)] = σ(f ′

1f2 −f1f
′
2)? Furthermore, it will be a very important

work to study out a universal procedure to calculate Lie symmetries for DDEs.
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